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In his blog post “Unreachable points”1, Radoslav Harman has posed the following puzzle:

In the 2D plane there is a circular disk D and a point a inside it. For each point b on
the boundary of D, and let Tb be the intersection of D and the line passing through
the midpoint of the line segment [a, b] and perpendicular to it. What is the set of
points of D which do not lie on any of the segments Tb?

In this short note we give a simple proof of a general version of this puzzle.

Figure 1: The white shape inside is an ellipsoid with center being the midpoint between a and
the center of the circle. The ellipsoid lies inside the disk if a does. The ellipsoid is described by
Theorem 5.

Theorem 1. Let a ∈ Rn with ∥a∥ ≤ 1. Furthermore, for b ∈ Rn let

Ta(b) = {x ∈ Rn : ⟨x− (a+ b)/2, a− b⟩ = 0}.

Then

Sa
def
=

∩
∥b∥=1

[Ta(b)]
c =

{
x ∈ Rn : ∥x∥ − ⟨a, x⟩ < 1− ∥a∥2

2

}
,

where [Ta(b)]
c = Rn\Ta(b), i.e., the complement of Ta(b) in Rn.

1http://radoslav-harman.blogspot.com/2010/02/nedosiahnutelne-body.html
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Proof. It is easy to see that for ∥b∥ = 1 we have

Ta(b) =

{
x ∈ Rn : ⟨b, x⟩ = ⟨a, x⟩+ 1− ∥a∥2

2

}
. (1)

Let us now fix x and ask whether there exists b of unit norm such that x ∈ Ta(b). It can
be shown using a continuity argument together with the Cauchy-Schwarz inequality that the
function b 7→ ⟨b, x⟩ maps the unit sphere onto the interval [−∥x∥, ∥x∥]. This, together with (1)
implies such b exists if and only if

−∥x∥ ≤ ⟨a, x⟩+ 1− ∥a∥2

2
≤ ∥x∥. (2)

Since ⟨a, x⟩ + ∥x∥ ≥ −∥a∥∥x∥ + ∥x∥ = ∥x∥(1 − ∥a∥) ≥ 0 ≥ (∥a∥2 − 1)/2, the left-hand side
inequality in (2) is always satisfied. Therefore, x does not lie in Ta(b) for any b of unit norm
precisely when the right-hand side inequality in (2) is violated, which proves the theorem.

Corollary 2. If ∥a∥ < 1, then all points of Sa have norm strictly less than one. If ∥a∥ = 1,
then Sa = ∅.

Proof. Assume ∥a∥ < 1, choose x ∈ Sa and let x = tx′, where t ≥ 0 and ∥x′∥ = 1. Then from
Theorem 1 we know that t∥x′∥ − t⟨a, x′⟩ < (1− ∥a∥2)/2, and consequently

∥x∥ = t <
1− ∥a∥2

2(1− ⟨a, x′⟩)
≤ 1− ∥a∥2

2(1− ∥a∥)
=

1 + ∥a∥
2

< 1.

If ∥a∥ = 1, then all x ∈ Sa must satisfy ∥x∥− ⟨a, x⟩ < 0. Since ∥x∥− ⟨a, x⟩ ≥ ∥x∥−∥a∥∥x∥ = 0,
Sa must be empty.

Corollary 3. If ∥a∥ < 1, then Sa is a convex set containing 0 and a.

Proof. It follows from Theorem 1 that Sa is a level set of the convex function f(x) = ∥x∥−⟨a, x⟩
and hence it is convex. That 0 ∈ Sa is trivial. To show that a ∈ Sa it is enough to note that
∥a∥ < (1 + ∥a∥)/2 and multiply both sides by 1− ∥a∥.

The following is a technical result which we will use in proving that Sa is an ellipsoid.

Lemma 4. Let a, x ∈ Rn satisfy ∥a∥ < 1 and ⟨a, x⟩+ (1− ∥a∥2)/2 < 0. Then ∥x∥ > −⟨a, x⟩+
(∥a∥2 − 1)/2.

Proof. Let α = ⟨a, x⟩. Then −α = −⟨a, x⟩ ≤ ∥a∥∥x∥ and hence ∥x∥ ≥ −α/∥a∥. It therefore
suffices to show that −α/∥a∥ > −α+(∥a∥2−1)/2, which can be simplified to α < 1

2∥a∥(1+∥a∥).
However, we know by assumption that α < (∥a∥2−1)/2 and therefore it is enough to prove that
∥a∥2 − 1 ≤ ∥a∥(1 + ∥a∥), which is straightforward.

Theorem 5. Assume ∥a∥ < 1. Then Sa is a full-dimensional ellipsoid and can be written as

Sa = {x ∈ Rn : (x− v)TB(x− v) < r2}.

Its shape is governed by the positive definite matrix B = In − aaT , it has center v = a/2, and
radius r = 1

2

√
1− ∥a∥2.
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Proof. We know from Theorem 1 that Sa = {x ∈ Rn : ∥x∥ < ⟨a, x⟩+ (1− ∥a∥2)/2}. Lemma 4
says that we can square both sides of this inequality without having to worry that we have
introduced new solutions. Letting t = ∥a∥2, we have

Sa = {x ∈ Rn : xTx < ⟨a, x⟩2 + (1− t)2/4 + ⟨a, x⟩(1− t)}
= {x ∈ Rn : xT (In − aaT )x < 2⟨(1− t)a/2, x⟩+ (1− t)2/4}
= {x ∈ Rn : xTBx < 2xTBv − vTBv + vTBv + (1− t)2/4}
= {x ∈ Rn : (x− v)TB(x− v) < vTBv + (1− t)2/4}
= {x ∈ Rn : (x− v)TB(x− v) < r2}.
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