On Harman's "Unreachable Points" Puzzle

Peter Richtárik

February 3, 2010

In his blog post "Unreachable points"¹, Radoslav Harman has posed the following puzzle:

In the 2D plane there is a circular disk D and a point a inside it. For each point b on the boundary of D, and let T_b be the intersection of D and the line passing through the midpoint of the line segment [a, b] and perpendicular to it. What is the set of points of D which do not lie on any of the segments T_b ?

In this short note we give a simple proof of a general version of this puzzle.

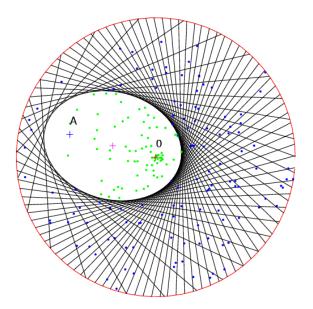


Figure 1: The white shape inside is an ellipsoid with center being the midpoint between a and the center of the circle. The ellipsoid lies inside the disk if a does. The ellipsoid is described by Theorem 5.

Theorem 1. Let $a \in \mathbb{R}^n$ with $||a|| \leq 1$. Furthermore, for $b \in \mathbb{R}^n$ let

$$T_a(b) = \{x \in \mathbf{R}^n : \langle x - (a+b)/2, a-b \rangle = 0\}.$$

Then

$$S_a \stackrel{def}{=} \bigcap_{\|b\|=1} [T_a(b)]^c = \left\{ x \in \mathbf{R}^n : \|x\| - \langle a, x \rangle < \frac{1 - \|a\|^2}{2} \right\},\$$

where $[T_a(b)]^c = R^n \setminus T_a(b)$, i.e., the complement of $T_a(b)$ in \mathbb{R}^n .

 $^{^{1}} http://radoslav-harman.blogspot.com/2010/02/nedosiahnutelne-body.html$

Proof. It is easy to see that for ||b|| = 1 we have

$$T_a(b) = \left\{ x \in \mathbf{R}^n : \langle b, x \rangle = \langle a, x \rangle + \frac{1 - \|a\|^2}{2} \right\}.$$
 (1)

Let us now fix x and ask whether there exists b of unit norm such that $x \in T_a(b)$. It can be shown using a continuity argument together with the Cauchy-Schwarz inequality that the function $b \mapsto \langle b, x \rangle$ maps the unit sphere onto the interval $[-\|x\|, \|x\|]$. This, together with (1) implies such b exists if and only if

$$-\|x\| \le \langle a, x \rangle + \frac{1 - \|a\|^2}{2} \le \|x\|.$$
(2)

Since $\langle a, x \rangle + ||x|| \ge -||a|| ||x|| + ||x|| = ||x||(1 - ||a||) \ge 0 \ge (||a||^2 - 1)/2$, the left-hand side inequality in (2) is always satisfied. Therefore, x does not lie in $T_a(b)$ for any b of unit norm precisely when the right-hand side inequality in (2) is violated, which proves the theorem. \Box

Corollary 2. If ||a|| < 1, then all points of S_a have norm strictly less than one. If ||a|| = 1, then $S_a = \emptyset$.

Proof. Assume ||a|| < 1, choose $x \in S_a$ and let x = tx', where $t \ge 0$ and ||x'|| = 1. Then from Theorem 1 we know that $t||x'|| - t\langle a, x' \rangle < (1 - ||a||^2)/2$, and consequently

$$||x|| = t < \frac{1 - ||a||^2}{2(1 - \langle a, x' \rangle)} \le \frac{1 - ||a||^2}{2(1 - ||a||)} = \frac{1 + ||a||}{2} < 1.$$

If ||a|| = 1, then all $x \in S_a$ must satisfy $||x|| - \langle a, x \rangle < 0$. Since $||x|| - \langle a, x \rangle \ge ||x|| - ||a|| ||x|| = 0$, S_a must be empty.

Corollary 3. If ||a|| < 1, then S_a is a convex set containing 0 and a.

Proof. It follows from Theorem 1 that S_a is a level set of the convex function $f(x) = ||x|| - \langle a, x \rangle$ and hence it is convex. That $0 \in S_a$ is trivial. To show that $a \in S_a$ it is enough to note that ||a|| < (1 + ||a||)/2 and multiply both sides by 1 - ||a||.

The following is a technical result which we will use in proving that S_a is an ellipsoid.

Lemma 4. Let $a, x \in \mathbb{R}^n$ satisfy ||a|| < 1 and $\langle a, x \rangle + (1 - ||a||^2)/2 < 0$. Then $||x|| > -\langle a, x \rangle + (||a||^2 - 1)/2$.

Proof. Let $\alpha = \langle a, x \rangle$. Then $-\alpha = -\langle a, x \rangle \leq ||a|| ||x||$ and hence $||x|| \geq -\alpha/||a||$. It therefore suffices to show that $-\alpha/||a|| > -\alpha + (||a||^2 - 1)/2$, which can be simplified to $\alpha < \frac{1}{2} ||a||(1 + ||a||)$. However, we know by assumption that $\alpha < (||a||^2 - 1)/2$ and therefore it is enough to prove that $||a||^2 - 1 \leq ||a||(1 + ||a||)$, which is straightforward.

Theorem 5. Assume ||a|| < 1. Then S_a is a full-dimensional ellipsoid and can be written as

$$S_a = \{x \in \mathbf{R}^n : (x - v)^T B(x - v) < r^2\}.$$

Its shape is governed by the positive definite matrix $B = I_n - aa^T$, it has center v = a/2, and radius $r = \frac{1}{2}\sqrt{1 - ||a||^2}$.

Proof. We know from Theorem 1 that $S_a = \{x \in \mathbf{R}^n : ||x|| < \langle a, x \rangle + (1 - ||a||^2)/2\}$. Lemma 4 says that we can square both sides of this inequality without having to worry that we have introduced new solutions. Letting $t = ||a||^2$, we have

$$S_{a} = \{x \in \mathbf{R}^{n} : x^{T}x < \langle a, x \rangle^{2} + (1-t)^{2}/4 + \langle a, x \rangle(1-t)\} \\ = \{x \in \mathbf{R}^{n} : x^{T}(I_{n} - aa^{T})x < 2\langle (1-t)a/2, x \rangle + (1-t)^{2}/4\} \\ = \{x \in \mathbf{R}^{n} : x^{T}Bx < 2x^{T}Bv - v^{T}Bv + v^{T}Bv + (1-t)^{2}/4\} \\ = \{x \in \mathbf{R}^{n} : (x-v)^{T}B(x-v) < v^{T}Bv + (1-t)^{2}/4\} \\ = \{x \in \mathbf{R}^{n} : (x-v)^{T}B(x-v) < r^{2}\}.$$