On Harman's "Unreachable Points" Puzzle

Peter Richtárik

February 3, 2010

In his blog post "Unreachable points" ${ }^{1}$, Radoslav Harman has posed the following puzzle:
In the 2D plane there is a circular disk D and a point a inside it. For each point b on the boundary of D, and let T_{b} be the intersection of D and the line passing through the midpoint of the line segment $[a, b]$ and perpendicular to it. What is the set of points of D which do not lie on any of the segments T_{b} ?

In this short note we give a simple proof of a general version of this puzzle.

Figure 1: The white shape inside is an ellipsoid with center being the midpoint between a and the center of the circle. The ellipsoid lies inside the disk if a does. The ellipsoid is described by Theorem 5.

Theorem 1. Let $a \in \mathbf{R}^{n}$ with $\|a\| \leq 1$. Furthermore, for $b \in \mathbf{R}^{n}$ let

$$
T_{a}(b)=\left\{x \in \mathbf{R}^{n}:\langle x-(a+b) / 2, a-b\rangle=0\right\}
$$

Then

$$
S_{a} \stackrel{\text { def }}{=} \bigcap_{\|b\|=1}\left[T_{a}(b)\right]^{c}=\left\{x \in \mathbf{R}^{n}:\|x\|-\langle a, x\rangle<\frac{1-\|a\|^{2}}{2}\right\}
$$

where $\left[T_{a}(b)\right]^{c}=R^{n} \backslash T_{a}(b)$, i.e., the complement of $T_{a}(b)$ in \mathbf{R}^{n}.

[^0]Proof. It is easy to see that for $\|b\|=1$ we have

$$
\begin{equation*}
T_{a}(b)=\left\{x \in \mathbf{R}^{n}:\langle b, x\rangle=\langle a, x\rangle+\frac{1-\|a\|^{2}}{2}\right\} \tag{1}
\end{equation*}
$$

Let us now fix x and ask whether there exists b of unit norm such that $x \in T_{a}(b)$. It can be shown using a continuity argument together with the Cauchy-Schwarz inequality that the function $b \mapsto\langle b, x\rangle$ maps the unit sphere onto the interval $[-\|x\|,\|x\|]$. This, together with (1) implies such b exists if and only if

$$
\begin{equation*}
-\|x\| \leq\langle a, x\rangle+\frac{1-\|a\|^{2}}{2} \leq\|x\| \tag{2}
\end{equation*}
$$

Since $\langle a, x\rangle+\|x\| \geq-\|a\|\|x\|+\|x\|=\|x\|(1-\|a\|) \geq 0 \geq\left(\|a\|^{2}-1\right) / 2$, the left-hand side inequality in (2) is always satisfied. Therefore, x does not lie in $T_{a}(b)$ for any b of unit norm precisely when the right-hand side inequality in (2) is violated, which proves the theorem.

Corollary 2. If $\|a\|<1$, then all points of S_{a} have norm strictly less than one. If $\|a\|=1$, then $S_{a}=\emptyset$.

Proof. Assume $\|a\|<1$, choose $x \in S_{a}$ and let $x=t x^{\prime}$, where $t \geq 0$ and $\left\|x^{\prime}\right\|=1$. Then from Theorem 1 we know that $t\left\|x^{\prime}\right\|-t\left\langle a, x^{\prime}\right\rangle<\left(1-\|a\|^{2}\right) / 2$, and consequently

$$
\|x\|=t<\frac{1-\|a\|^{2}}{2\left(1-\left\langle a, x^{\prime}\right\rangle\right)} \leq \frac{1-\|a\|^{2}}{2(1-\|a\|)}=\frac{1+\|a\|}{2}<1
$$

If $\|a\|=1$, then all $x \in S_{a}$ must satisfy $\|x\|-\langle a, x\rangle<0$. Since $\|x\|-\langle a, x\rangle \geq\|x\|-\|a\|\|x\|=0$, S_{a} must be empty.

Corollary 3. If $\|a\|<1$, then S_{a} is a convex set containing 0 and a.
Proof. It follows from Theorem 1 that S_{a} is a level set of the convex function $f(x)=\|x\|-\langle a, x\rangle$ and hence it is convex. That $0 \in S_{a}$ is trivial. To show that $a \in S_{a}$ it is enough to note that $\|a\|<(1+\|a\|) / 2$ and multiply both sides by $1-\|a\|$.

The following is a technical result which we will use in proving that S_{a} is an ellipsoid.
Lemma 4. Let $a, x \in \mathbf{R}^{n}$ satisfy $\|a\|<1$ and $\langle a, x\rangle+\left(1-\|a\|^{2}\right) / 2<0$. Then $\|x\|>-\langle a, x\rangle+$ $\left(\|a\|^{2}-1\right) / 2$.

Proof. Let $\alpha=\langle a, x\rangle$. Then $-\alpha=-\langle a, x\rangle \leq\|a\|\|x\|$ and hence $\|x\| \geq-\alpha /\|a\|$. It therefore suffices to show that $-\alpha /\|a\|>-\alpha+\left(\|a\|^{2}-1\right) / 2$, which can be simplified to $\alpha<\frac{1}{2}\|a\|(1+\|a\|)$. However, we know by assumption that $\alpha<\left(\|a\|^{2}-1\right) / 2$ and therefore it is enough to prove that $\|a\|^{2}-1 \leq\|a\|(1+\|a\|)$, which is straightforward.

Theorem 5. Assume $\|a\|<1$. Then S_{a} is a full-dimensional ellipsoid and can be written as

$$
S_{a}=\left\{x \in \mathbf{R}^{n}:(x-v)^{T} B(x-v)<r^{2}\right\}
$$

Its shape is governed by the positive definite matrix $B=I_{n}-a a^{T}$, it has center $v=a / 2$, and radius $r=\frac{1}{2} \sqrt{1-\|a\|^{2}}$.

Proof. We know from Theorem 1 that $S_{a}=\left\{x \in \mathbf{R}^{n}:\|x\|<\langle a, x\rangle+\left(1-\|a\|^{2}\right) / 2\right\}$. Lemma 4 says that we can square both sides of this inequality without having to worry that we have introduced new solutions. Letting $t=\|a\|^{2}$, we have

$$
\begin{aligned}
S_{a} & =\left\{x \in \mathbf{R}^{n}: x^{T} x<\langle a, x\rangle^{2}+(1-t)^{2} / 4+\langle a, x\rangle(1-t)\right\} \\
& =\left\{x \in \mathbf{R}^{n}: x^{T}\left(I_{n}-a a^{T}\right) x<2\langle(1-t) a / 2, x\rangle+(1-t)^{2} / 4\right\} \\
& =\left\{x \in \mathbf{R}^{n}: x^{T} B x<2 x^{T} B v-v^{T} B v+v^{T} B v+(1-t)^{2} / 4\right\} \\
& =\left\{x \in \mathbf{R}^{n}:(x-v)^{T} B(x-v)<v^{T} B v+(1-t)^{2} / 4\right\} \\
& =\left\{x \in \mathbf{R}^{n}:(x-v)^{T} B(x-v)<r^{2}\right\} .
\end{aligned}
$$

[^0]: ${ }^{1}$ http://radoslav-harman.blogspot.com/2010/02/nedosiahnutelne-body.html

